
Improving the Performance of Tensor
Matrix Vector Product

Dinesh Kaushik
Argonne National Laboratory

Tensor Matrix Vector Product

• Operator comes from the tensor product of a dense matrix
with the identity matrix

• Ax, Ay, Az are one directional operators (dense)
• v and w are vectors of size n3

Avw =

xyz AIIIAIIIAA ⊗⊗+⊗⊗+⊗⊗=

Two Ways

• Build the large sparse matrix
Large sparse matrix of size (n3 x n3 for 3D case)
Slow memory bandwidth limited performance

• Just evaluate the action of A on v (without explicitly
forming A)

Done as dense matrix-matrix multiplication
Very efficient implementation
Huge savings in memory

Performance Issues for Sparse Matrix Vector Product

• Little data reuse
• High ratio of load/store to instructions/floating-point

ops
• Stalling of multiple load/store functional units on the

same cache line
• Low available memory bandwidth

Sparse Matrix Vector Algorithm: A General
Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1) { // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}

Estimating the Memory Bandwidth
Limitation

Assumptions

• Perfect Cache (only compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores per cycle

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double)
// ia, N input (size n) and output (size m) vectors

+ Nnz* (sizeof(int) + sizeof(double))
// ja, and a arrays

= 4*(m+nnz) + 8*(N*(m+n)+ Nnz)

• Number of Floating-Point Multiply Add (fmadd) Ops = N*nz
• For square matrices,

(Since Nnz >> n, Bytes transferred / fmadd ~12/N)

• Similarly, for Block AIJ (BAIJ) format

Estimating the Memory Bandwidth
Limitation (Contd.)

N

N
n)*

N
 (

nz

12416 ed/fmadd transferrBytes ++=

)8
*
4(*

*
416 ed/fmadd transferrBytes

NbN

N
n)

bN
(

nz
+++=

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz) BlueGene (700 MHz)

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

Second Choice: Dense Matrix-Matrix
Multiplication

• We just need to store the small dense matrices of size
nxn

for 3 dimensions memory needed is 3n2

Good ratio of flops to bytes: O(n4) operations O(n3)
doubles
Gets better for higher dimensions

Evaluating the Tensor Product Terms

• Type 1

• Type 2

• Type 3

Loop over Type 2 for i = 1, p

[] []nxmnxnnmnnm VAvAI =⊗)(

[] [] T
nxnnmxnmnmn AVvIA =⊗)(

mnmnp vIAI)(⊗⊗

Performance of Tensor Matrix-Vector
Multiplication – 3D case

(Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
Memory Bandwidth Limited Bound 670 Mflops/s

n

M
flo

ps
/s

20 40 60 80 100

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
Custom
MXM
DGEMM

Performance of Tensor Matrix-Vector
Multiplication – Fixed Mesh Points (n=7)

(Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)

Dimensions

M
flo

ps
/s

3 4 5 6 7 8 9 10
250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

3500

Custom
MXM
DGEMM

Performance of Tensor Matrix-Vector
Multiplication –Long Reaction Co-ordinate
(51 points along reaction path and 7 points in other dimensions)

Dimensions

M
flo

ps
/s

3 4 5 6 7 8 9 10

1000

2000

3000

4000

5000

Custom
MXM
DGEMM

Conclusions and Future Work

• Very efficient implementation
Sparse matvecs take about 80% of execution time
We expect that tensor product implementation can
improve the performance by a factor of three to five

• Possible to solve much larger problems because of
huge savings in memory requirement

• Parallel implementation

Acknowledgements

• Barry Smith, William Gropp, and Paul Fischer for
many helpful discussions

	Improving the Performance of Tensor Matrix Vector Product�
	Tensor Matrix Vector Product
	Two Ways
	Performance Issues for Sparse Matrix Vector Product
	Sparse Matrix Vector Algorithm: A General Form
	Estimating the Memory Bandwidth Limitation
	Estimating the Memory Bandwidth Limitation (Contd.)
	Realistic Measures of Peak Performance�Sparse Matrix Vector Product�One vector, matrix size, m = 90,708, nonzero entries nz =
	Second Choice: Dense Matrix-Matrix Multiplication
	Evaluating the Tensor Product Terms
	Performance of Tensor Matrix-Vector Multiplication – 3D case � (Intel Madison Processor 1.5 GHz, 6 Gflops/s Peak, 4 GB Memory)
	Performance of Tensor Matrix-Vector Multiplication – Fixed Mesh Points (n=7) � (Intel Madison Processor 1.5 GHz, 6 Gflops/s Pe
	Performance of Tensor Matrix-Vector Multiplication –Long Reaction Co-ordinate�(51 points along reaction path and 7 points in o
	Conclusions and Future Work
	Acknowledgements

